Hypoimmunogenic hPSC-derived cardiac organoids for immune evasion and heart repair

bioRxiv [Preprint]. 2025 Apr 9:2025.04.09.648007. doi: 10.1101/2025.04.09.648007.

Abstract

Human pluripotent stem cell (hPSC)-derived cardiac therapies hold great promise for heart regeneration but face major translational barriers due to allogeneic immune rejection. Here, we engineered hypoimmunogenic hPSCs using a two-step CRISPR-Cas9 strategy: (1) B2M knockout, eliminating HLA class I surface expression, and (2) knock-in of HLA-E or HLA-G trimer constructs in the AAVS1 safe harbor locus to confer robust immune evasion. Hypoimmunogenic hPSCs maintained pluripotency, efficiently differentiated into cardiac cell types that resisted both T and NK cell-mediated cytotoxicity in vitro , and self-assembled into engineered cardiac organoids. Comprehensive analyses of the hypoimmunogenic cells and organoids revealed preservation of transcriptomic, structural, and functional properties with minimal off-target effects from gene editing. In vivo , hypoimmunogenic cardiac organoids restored contractile function in infarcted rat hearts and demonstrated superior graft retention and immune evasion in humanized mice compared to wild-type counterparts. These findings establish the therapeutic potential of hypoimmunogenic hPSC-CMs in the cardiac organoid platform, laying the foundation for off-the-shelf cardiac cell therapies to treat cardiovascular disease, the leading cause of death worldwide.

Publication types

  • Preprint