Predictive models of severe disease in patients with COVID-19 pneumonia at an early stage on CT images using topological properties

Radiol Phys Technol. 2025 Jun;18(2):534-546. doi: 10.1007/s12194-025-00906-1. Epub 2025 Apr 28.

Abstract

Prediction of severe disease (SVD) in patients with coronavirus disease (COVID-19) pneumonia at an early stage could allow for more appropriate triage and improve patient prognosis. Moreover, the visualization of the topological properties of COVID-19 pneumonia could help clinical physicians describe the reasons for their decisions. We aimed to construct predictive models of SVD in patients with COVID-19 pneumonia at an early stage on computed tomography (CT) images using SVD-specific features that can be visualized on accumulated Betti number (BN) maps. BN maps (b0 and b1 maps) were generated by calculating the BNs within a shifting kernel in a manner similar to a convolution. Accumulated BN maps were constructed by summing BN maps (b0 and b1 maps) derived from a range of multiple-threshold values. Topological features were computed as intrinsic topological properties of COVID-19 pneumonia from the accumulated BN maps. Predictive models of SVD were constructed with two feature selection methods and three machine learning models using nested fivefold cross-validation. The proposed model achieved an area under the receiver-operating characteristic curve of 0.854 and a sensitivity of 0.908 in a test fold. These results suggested that topological image features could characterize COVID-19 pneumonia at an early stage as SVD.

Keywords: Accumulated Betti number map; COVID-19; Predictive model; Severity; Topological features.

MeSH terms

  • Aged
  • COVID-19* / diagnostic imaging
  • Female
  • Humans
  • Machine Learning
  • Male
  • Middle Aged
  • SARS-CoV-2
  • Severity of Illness Index
  • Tomography, X-Ray Computed*