Trained immunity, a de facto innate immune memory characterized by enhanced responsiveness to future challenges, is underpinned by epigenetic and metabolic rewiring. In individuals vaccinated with Bacille Calmette-Guérin (BCG), lactate release was associated with enhanced cytokine responsiveness upon restimulation. Trained monocytes/macrophages are characterized by lactylation of histone H3 at lysine residue 18(H3K18la), mainly at distal regulatory regions. Histone lactylation was positively associated with active chromatin and gene transcription, persisted after the elimination of the training stimulus, and was strongly associated with "trained" gene transcription in response to a secondary stimulus. Increased lactate production upon induction of trained immunity led to enhanced production of proinflammatory cytokines, a process associated with histone lactylation. Pharmacological inhibition of lactate production or histone lactylation blocked trained immunity responses, while polymorphisms of LDHA and EP300 genes modulated trained immunity. Long-term histone lactylation persisted in vivo 90 days after vaccination with BCG, highlighting H3K18la as an epigenetic mark of innate immune memory.
Keywords: BCG; Bacillus Calmette-Guérin; H3K18la; lactate; lactylation; trained immunity.
Copyright © 2025 Elsevier Inc. All rights reserved.