The developmental factor TBX3 engages with the Wnt/β-catenin transcriptional complex in colorectal cancer to regulate metastasis genes

Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2419691122. doi: 10.1073/pnas.2419691122. Epub 2025 May 9.

Abstract

Wnt signaling orchestrates gene expression in a plethora of processes during development and adult cell homeostasis via the action of nuclear β-catenin. Yet, little is known about how β-catenin generates context-specific transcriptional outcomes. Understanding this will reveal how aberrant Wnt/β-catenin signaling causes neoplasia specifically of the colorectal epithelium. We have previously identified the transcription factor TBX3 as a tissue-specific component of the Wnt/β-catenin nuclear complex during mouse forelimb development. In this study, we show that TBX3 is functionally active in human colorectal cancer (CRC). Here, genome-wide binding and transcriptomics analyses reveal that TBX3 regulates cancer metastasis genes in cooperation with Wnt/β-catenin. Proteomics proximity labeling performed across Wnt pathway activation shows that TBX3 engages with several transcription factors and chromatin remodeling complexes found at Wnt responsive elements (WRE). Protein sequence and structure analysis of TBX3 revealed short motifs, including an exposed Asn-Pro-Phe (NPF), that mediate these interactions. Deletion of these motifs abrogates TBX3's proximity to its protein partners and its ability to enhance the Wnt-dependent transcription. TBX3 emerges as a key modulator of the oncogenic activity of Wnt/β-catenin in CRC, and its mechanism of action exposes protein-interaction surfaces as putative druggable targets.

Keywords: CUT&RUN; TBX3; Wnt signaling; proximity proteomics; β-catenin.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / metabolism
  • Colorectal Neoplasms* / pathology
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Mice
  • Neoplasm Metastasis / genetics
  • T-Box Domain Proteins* / genetics
  • T-Box Domain Proteins* / metabolism
  • Transcription, Genetic
  • Wnt Signaling Pathway* / genetics
  • beta Catenin* / genetics
  • beta Catenin* / metabolism

Substances

  • T-Box Domain Proteins
  • TBX3 protein, human
  • beta Catenin