Visible Light-Driven Phenol Degradation via Advanced Oxidation Processes with Ferrous Oxalate Obtained from Black Sands: A Kinetics Study

Molecules. 2025 May 6;30(9):2059. doi: 10.3390/molecules30092059.

Abstract

Ferrous oxalate dihydrate (α-FOD) was synthesized from Ecuadorian black sands for phenol removal from aqueous solutions. Visible light-driven photodegradation kinetics were studied by varying the initial pollutant concentration, solution pH, and α-FOD dosage and by adding peroxydisulfate (PDS), including quenching tests. A representative model of phenol photodegradation was obtained by the Langmuir-Hinshelwood mechanism over a large range of concentrations (apparent kinetic constant, k = 0.524 h-1). Almost complete removal was reached within 1 h under dark + 9 h under visible irradiation. The degradation rate was slightly affected by pH in the range of 3 to 9, with a significant improvement at pH 11 (k = 1.41-fold higher). The optimal α-FOD dosage was ~0.5 g/L. Two regimes were observed when using PDS: first, a heterogeneous Fenton-like process during the first few minutes after PDS addition; second, pure photocatalysis to completely remove the phenol. When comparing the two systems, without and with PDS, the half-life time for pure photocatalysis was 2.5 h (after the lamp was switched on). When adding PDS (1.0 mM), the half-life time was reduced to a few minutes (5 min after PDS addition, phenol removal was 66%). The photocatalyst presented remarkable degradation efficiency up to five repeated cycles.

Keywords: Fenton like; heterogeneous photocatalysis; low-cost precursor; organic micropollutants; α-FOD.