Perspectives on the use of the CRISPR system in plants to improve recombinant therapeutic protein production

J Biotechnol. 2025 May 13:405:111-123. doi: 10.1016/j.jbiotec.2025.05.010. Online ahead of print.

Abstract

The plant-based system is a promising platform for producing biotherapeutics due to its scalability, cost-effectiveness, and lower risk of contamination by human pathogens. However, several challenges remain, including optimizing yield, stability, functionality, and the immunogenic properties of recombinant proteins. In this context, this review explores the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology to improve the production of recombinant therapeutic proteins in plants. Traditional tools and strategies for plant-based recombinant protein production are discussed, highlighting their limitations and the potential of CRISPR to overcome these boundaries. It delves into the components of the CRISPR-Cas system and its application in optimizing therapeutic protein function and yield. Major strategies include modifying glycosylation patterns to humanize plant-produced proteins, metabolic pathway engineering to increase protein accumulation, and the precise integration of transgenes into specific genomic loci to enhance expression stability and productivity. These advancements demonstrate how CRISPR system can overcome bottlenecks in plant molecular farming and enable the production of high-quality therapeutic proteins. Lastly, future trends and perspectives are examined, emphasizing ongoing innovations and challenges in the field. The review underscores the potential of CRISPR to reshape plant biotechnology and support the growing demand for recombinant therapeutics, offering new avenues for sustainable and efficient protein production systems. KEY MESSAGE: CRISPR technology has the potential to improve plant-based therapeutic protein production by optimizing yield, stability, and humanization, overcoming bottlenecks, and enabling sustainable, efficient systems for recombinant biotherapeutics.

Keywords: Biotherapeutics; Genetic transformation; Molecular pharming; Vaccines and antibodies.

Publication types

  • Review