Background/Objectives: Epilepsy is a common neurological disorder with pathological mechanisms closely associated with the spatiotemporal dynamic characteristics of electroencephalogram (EEG) signals. Although significant progress has been made in epileptic seizure detection methods using time-frequency analysis, current research still faces challenges in terms of an insufficient utilization of phase information. Methods: In this study, we propose an effective epileptic seizure detection framework based on continuous wavelet transform (CWT) and a hybrid network consisting of convolutional neural network (CNN) and vision transformer (ViT). First, the raw EEG signals are processed by the CWT. Then, the phase spectrogram and power spectrogram of the EEG are generated, and they are sent into the designed CNN and ViT branches of the network to extract more discriminative EEG features. Finally, the features output from the two branches are fused and fed into the classification network to obtain the detection results. Results: Experimental results on the CHB-MIT public dataset and our SH-SDU clinical dataset show that the proposed framework achieves sensitivities of 98.09% and 89.02%, specificities of 98.21% and 95.46%, and average accuracies of 98.45% and 94.66%, respectively. Furthermore, we compared the spectral characteristics of CWT with other time-frequency transforms within the hybrid architecture, demonstrating the advantages of the CWT-based CNN-ViT architecture. Conclusions: These results highlight the outstanding epileptic seizure detection performance of the proposed framework and its significant clinical feasibility.
Keywords: continuous wavelet transform; convolutional neural network; seizure detection; vision transformer.