Systems Biology-Driven Discovery of Host-Targeted Therapeutics for Oropouche Virus: Integrating Network Pharmacology, Molecular Docking, and Drug Repurposing

Pharmaceuticals (Basel). 2025 Apr 23;18(5):613. doi: 10.3390/ph18050613.

Abstract

Background: Oropouche virus (OROV), part of the Peribunyaviridae family, is an emerging pathogen causing Oropouche fever, a febrile illness endemic in South and Central America. Transmitted primarily through midge bites (Culicoides paraensis), OROV has no specific antiviral treatment or vaccine. This study aims to identify host-targeted therapeutics against OROV using computational approaches, offering a potential strategy for sustainable antiviral drug discovery. Methods: Virus-associated host targets were identified using the OMIM and GeneCards databases. The Enrichr and DSigDB platforms were used for drug prediction, filtering compounds based on Lipinski's rule for drug likeness. A protein-protein interaction (PPI) network analysis was conducted using the STRING database and Cytoscape 3.10.3 software. Four key host targets-IL10, FASLG, PTPRC, and FCGR3A-were prioritized based on their roles in immune modulation and OROV pathogenesis. Molecular docking simulations were performed using the PyRx software to evaluate the binding affinities of selected small-molecule inhibitors-Acetohexamide, Deptropine, Methotrexate, Retinoic Acid, and 3-Azido-3-deoxythymidine-against the identified targets. Results: The PPI network analysis highlighted immune-mediated pathways such as Fc-gamma receptor signaling, cytokine control, and T-cell receptor signaling as critical intervention points. Molecular docking revealed strong binding affinities between the selected compounds and the prioritized targets, suggesting their potential efficacy as host-targeting antiviral candidates. Acetohexamide and Deptropine showed strong binding to multiple targets, indicating broad-spectrum antiviral potential. Further in vitro and in vivo validations are needed to confirm these findings and translate them into clinically relevant treatments. Conclusions: This study highlights the potential of using computational approaches to identify host-targeted therapeutics for Oropouche virus (OROV). By targeting key host proteins involved in immune modulation-IL10, FASLG, PTPRC, and FCGR3A-the selected compounds, Acetohexamide and Deptropine, demonstrate strong binding affinities, suggesting their potential as broad-spectrum antiviral candidates. Further experimental validation is needed to confirm their efficacy and potential for clinical application, offering a promising strategy for sustainable antiviral drug discovery.

Keywords: computational biology; drug development; molecular docking validation; neglected tropical diseases; virus–host protein interaction.