A microbial amino-acid-conjugated bile acid, tryptophan-cholic acid, improves glucose homeostasis via the orphan receptor MRGPRE

Cell. 2025 May 22:S0092-8674(25)00560-4. doi: 10.1016/j.cell.2025.05.010. Online ahead of print.

Abstract

Recently, microbial amino-acid-conjugated bile acids (MABAs) have been found to be prevalent in human samples. However, their physiological significance is still unclear. Here, we identify tryptophan-conjugated cholic acid (Trp-CA) as the most significantly decreased MABA in patients with type 2 diabetes (T2D), and its abundance is negatively correlated with clinical glycemic markers. We further demonstrate that Trp-CA improves glucose tolerance in diabetic mice. Mechanistically, we find that Trp-CA is a ligand of the orphan G protein-coupled receptor (GPCR) Mas-related G protein-coupled receptor family member E (MRGPRE) and determine the binding mode between the two. Both MRGPRE-Gs-cyclic AMP (cAMP) and MRGPRE-β-arrestin-1-aldolase A (ALDOA) signaling pathways contribute to the metabolic benefits of Trp-CA. Additionally, we find that the bacterial bile salt hydrolase/transferase of Bifidobacterium is responsible for the production of Trp-CA. Together, our findings pave the way for further research on MABAs and offer additional therapeutic targets for the treatment of T2D.

Keywords: GPCR; bile acids; microbiota; type 2 diabetes.