Alzheimer's disease (AD) is a complex neurodegenerative disorder that is characterized by the accumulation of pathologic tau and beta-amyloid proteins. UFMylation is an emerging ubiquitin-like post-translational modification that is crucial for healthy brain development. The UFM1 cascade was recently identified as a major modifier of tau aggregation in vitro and in vivo. Moreover, post-mortem AD brain shows pronounced alterations of UFMylation that are significantly associated with pathological tau, suggesting UFM1 might indeed be a modifier of human disease. However, the link between AD and UFMylation is yet to be fully explored. Interestingly, the UFMylation cascade is known to play important roles for several pathways that are known to be altered in AD, such as the DNA damage response, ER homeostasis, autophagy and the immune response. This review discusses the many connections between UFMylation with AD pathogenesis, emphasizing the role of UFMylation in these pathways and their abnormalities in AD. Understanding these connections is important to elucidate molecular mechanisms how UFM1 may impact AD and to uncover novel therapeutic strategies targeting UFMylation pathways for disease modification.
© 2025. The Author(s).