The four serotypes of dengue virus (DENV1-4) are a major health concern putting 50% of the global population at risk of infection. Crucially, DENV vaccines must be tetravalent to provide protection against all four serotypes because immunity to only one serotype can enhance infections caused by heterologous serotypes. Uneven replication of live-attenuated viruses in tetravalent vaccines can lead to disease enhancement instead of protection. Subunit vaccines are a promising alternative as the vaccine components are not dependent on viral replication and antigen doses can be controlled to achieve a balanced response. Here, we show that a tetravalent subunit vaccine of dengue envelope (E) proteins computationally stabilized to form native-like dimers elicits type-specific neutralizing antibodies in mice against all four serotypes. The immune response was enhanced by displaying the E dimers on liposomes embedded with adjuvant, and no interference was detected between the four components.
© 2025. The Author(s).