Unveiling the Influence and Mechanisms of Enhancing Ferrite-Phase Composition on the Properties of Calcium Sulfoaluminate Cement

Materials (Basel). 2025 May 23;18(11):2457. doi: 10.3390/ma18112457.

Abstract

Calcium sulfoaluminate (CSA) cement has emerged as a low-carbon alternative to ordinary Portland cement (OPC), offering reduced CO2 emissions and rapid strength development. However, the role of the ferrite phase in CSA systems remains underexplored. This study investigates the influence of ferrite-phase composition on CSA cement properties through targeted clinker design, hydration analysis, and macro-micro performance testing. Nine clinker formulations were synthesized by systematically increasing the ferrite content (10-30%) while adjusting belite (C2S) proportions, using limestone, bauxite, and supplementary Fe2O3/SiO2. Results reveal that the ferrite phase enhances the formation and stabilization of ye'elimite (C4A3Š) during clinkering and reduces low-activity transitional phase products. Increasing the iron-phase content appropriately improves early strength by promoting ettringite (AFt) formation and refines pore structures to enhance later strength development. The maximum strength improvement is achieved when the target ferrite-phase content is set to 15%, showing a 25.1% increase in 1 d strength and an 11.5% increase in 28 d strength. While ferrite phases and C2S ensure long-term strength gains, excessive ferrite content reduces C4A3Š availability, limiting early AFt formation and compromising initial strength. These findings highlight the dual role of the ferrite phase in optimizing CSA cement performance and sustainability, providing a foundation for designing ferrite-rich, low-carbon binders.

Keywords: AFt; C4A3Š; C4AF; CSA; ferrite phase; influence mechanisms.