Macrophage-augmented organoids recapitulate the complex pathophysiology of viral diseases and enable development of multitarget therapeutics

Nat Biomed Eng. 2025 Jun 13. doi: 10.1038/s41551-025-01417-5. Online ahead of print.

Abstract

The pathophysiology of acute viral diseases is complex. It is characterized by strong inflammatory responses driven by immune cells, leading to tissue damage. Currently available in vitro models mainly recapitulate the viral life cycle but fail to model immune cell-mediated pathogenesis. Here we build macrophage-augmented organoids (MaugOs) by integrating macrophages into primary organoids that are cultured from human liver tissues. We test the infections of two RNA viruses, hepatitis E virus and SARS-CoV-2, and one DNA virus, monkeypox virus, which either primarily or secondarily affect the human liver. In all three models of acute viral diseases, MaugOs recapitulate infection and the resulting inflammatory response, although to different levels. We use this system to dissect the multifunctional role of human bile on hepatitis E virus replication and the inflammatory response through distinct mechanisms of action. We also show that MaugOs recapitulate features of inflammatory cell death triggered by hepatitis E virus infection when integrated with pro-inflammatory macrophages. Furthermore, we demonstrate a proof of concept in MaugOs for development of multitarget therapeutics that simultaneously target the virus, inflammatory response and the resultant inflammatory cell death.