Brain disorders, encompassing neurodegenerative conditions and intracranial neoplasms, present formidable obstacles in the realm of pharmacological delivery due to the existence of athe blood-brain barrier (BBB) and the restricted bioavailability of therapeutic agents. Alginate-derived nanoformulations have emerged as highly promising systems for drug delivery, offering attributes such as biocompatibility, regulated release, and improved targeting efficacies. This review investigates contemporary advancements in alginate-based nanoformulations, with a particular emphasis on their efficacy in surmounting obstacles to successful pharmacological delivery to the brain. Initially, we furnish a comprehensive overview of alginate, underscoring its pertinent properties, biomedical applications, and inherent limitations. Subsequently, the discourse progresses to strategies for nanoformulation, which encompass lipid-based, polymeric, and inorganic methodologies, with a focus on their benefits in relation to cerebral targeting. Moreover, this review entails the therapeutic potential of alginate-based nanoformulations in addressing significant neurological disorders, including Alzheimer's disease, Parkinson's disease, brain tumours, traumatic brain injury, epilepsy, and amyotrophic lateral sclerosis. By amalgamating cutting-edge nanotechnology with the distinctive properties of alginate, these formulations signify a promising pathway for the advancement of efficacious therapies aimed at brain targeting. Additionally, prospective research trajectories and challenges associated with the optimization of alginate-based nanocarriers for clinical applications are also elucidated.
Keywords: Alginate; Blood brain barrier; Nanoformulations; Neurological disorders; Targeted therapy.
Copyright © 2025 Elsevier B.V. All rights reserved.