Nanomedicine Approaches for Autophagy Modulation in Cancer Therapy

Small Sci. 2025 Apr 11;5(6):2400607. doi: 10.1002/smsc.202400607. eCollection 2025 Jun.

Abstract

Cancer is a daunting global health problem with a steadily rising incidence. Despite the wide arsenal of current anticancer therapies, challenges such as drug resistance, tumor heterogeneity, poor targeting, and severe side effects often lead to suboptimal efficacy and poor patient outcomes, highlighting the need for innovative therapies. Autophagy modulation has emerged as an attractive approach to complement existing therapies. The dual role of autophagy in cancer promotion and suppression has inspired the development of new drugs and therapeutic strategies focusing on both inhibition and induction. Despite the promising results of current autophagy modulators in preclinical studies, challenges such as the lack of selectivity and potency, toxicity, poor pharmacokinetics, and inadequate tumor targeting continue to limit their successful clinical translation. Many of these challenges could be overcome using nanomedicine. This review explores recent advancements in nanomedicine strategies for autophagy modulation. Successful combination strategies leveraging nanoparticles and autophagy modulators in synergy with chemotherapy, immunotherapy, phototherapy, gene therapy, and other modalities are presented. Additionally, nanomaterials with intrinsic autophagy-modulating capabilities, such as self-assembling autophagy inhibitors, are discussed. Finally, limitations of autophagy modulators currently in clinical trials are discussed, and future perspectives on designing nanomedicine for successful clinical implementation are explored.

Keywords: autophagy inhibitions; autophagy modulations; cancer therapies; clinical translations; drug resistances; nanomedicines.