Brown adipose tissue (BAT) simultaneously metabolizes fatty acids (FAs) and glucose under cold stress but favors FAs as the primary fuel for heat production. It remains unclear how BAT steers fuel preference toward FAs over glucose. Here, we show that the malate-aspartate shuttle (MAS) is activated by cold in BAT and plays a crucial role in promoting mitochondrial FA utilization. Mechanistically, cold stress selectively induces glutamic-oxaloacetic transaminase (GOT1), a key MAS enzyme, via the β-adrenergic receptor-PKA-PGC-1α axis. The increase in GOT1 activates MAS, transferring reducing equivalents from the cytosol to mitochondria. This process enhances FA oxidation in mitochondria while limiting glucose oxidation. In contrast, loss of MAS activity by GOT1 deficiency reduces FA oxidation, leading to increased glucose oxidation. Together, our work uncovers a unique regulatory mechanism and role for MAS in mitochondrial fuel selection and advances our understanding of how BAT maintains fuel preference for FAs under cold conditions.
Keywords: CP: Metabolism; GOT1; NADH shuttle; PGC-1α; brown adipocytes; fatty acid oxidation; glucose oxidation; glutamic oxaloacetic transaminase 1; glycolysis; malate-aspartate shuttle; mitochondrial thermogenesis.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.