The bioactivity-guided isolation of potentially active natural products has been widely utilized in pharmaceutical discovery. In this study, by screening fungal extracts against coxsackievirus B3 (CVB3), three new aspochalasins, templichalasins A‒C (1‒3), along with six known aspochalasins (4‒9) were isolated from an active extract derived from the endophytic fungus Aspergillus templicola LHWf045. Compound 1 features a unique 5/6/5/7/5 pentacyclic ring system, while compounds 2 and 3 possess unusual 5/6/6/7 tetracyclic skeletons. Their structures were characterized through extensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Additionally, we demonstrated that compound 4 can be readily converted into compounds 1‒3 under mild acidic conditions and proposed a plausible mechanism for this conversion. Bioactivity evaluation of compounds 1‒9 against CVB3 revealed the inhibitory effects of all compounds against the virus. Notably, compound 9 exhibited superior antiviral activity, surpassing the commercial drug ribavirin in selectivity index (SI) value.
Keywords: Antiviral activity; Aspergillus templicola; Aspochalasins; Structural elucidation.
Copyright © 2025 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.