Owing to its exceptional physicochemical and biological properties, graphene oxide (GO), the oxidized form of graphene, has attracted considerable interest in bone regenerative engineering. The oxygen-functional groups on the backbone of GO enable biomolecule adherence, protein adsorption, cell adhesion, proliferation, differentiation, calcium ion adsorption and bone matrix mineralization. These oxygen functional groups enhance GO's interaction with biological fluids, facilitating its hydrolytic biodegradation. Recent preclinical studies have indicated that GO effectively improves mechanical strength, immunomodulation, and osteoinduction when utilized within diverse matrix structures including natural and synthetic polymers and ceramics to induce osteogenesis. Advanced bone regenerative applications of GO, such as implant coating and delivery of bioactive compounds, have demonstrated enhanced osseointegration, antibacterial efficacy, and pro-healing microenvironments. However, there are still challenges regarding the high-quality large-scale synthesis and long-term biocompatibility of GO. Additionally, the variability in the characteristics of GO resulting from different synthesis methods demonstrates further challenges for therapeutic translation. This study provides a comprehensive review of the recent preclinical research on the translational potential of GO, discussing the convergence of its exceptional properties for use in bone regenerative engineering along with its current challenges and future perspectives.
Keywords: Bone Regeneration; Clinical Translation; Composite Nanomaterials; Graphene Oxide; Osteogenic Differentiation; Oxygen Functional Groups; Regenerative; Regenerative Engineering; Scaffold; Stem Cells.
© 2025 The Authors. Published by American Chemical Society.