Research on Motion Transfer Method from Human Arm to Bionic Robot Arm Based on PSO-RF Algorithm

Biomimetics (Basel). 2025 Jun 11;10(6):392. doi: 10.3390/biomimetics10060392.

Abstract

Although existing motion transfer methods for bionic robot arms are based on kinematic equivalence or simplified dynamic models, they frequently fail to tackle dynamic compliance and real-time adaptability in complex human-like motions. To address this shortcoming, this study presents a motion transfer method from the human arm to a bionic robot arm based on the hybrid PSO-RF (Particle Swarm Optimization-Random Forest) algorithm to improve joint space mapping accuracy and dynamic compliance. Initially, a high-precision optical motion capture (Mocap) system was utilized to record human arm trajectories, and Kalman filtering and a Rauch-Tung-Striebel (RTS) smoother were applied to reduce noise and phase lag. Subsequently, the joint angles of the human arm were computed through geometric vector analysis. Although geometric vector analysis offers an initial estimation of joint angles, its deterministic framework is subject to error accumulation caused by the occlusion of reflective markers and kinematic singularities. To surmount this limitation, this study designed five action sequences for the establishment of the training database for the PSO-RF model to predict joint angles when performing different actions. Ultimately, an experimental platform was built to validate the motion transfer method, and the experimental verification showed that the system attained high prediction accuracy (R2 = 0.932 for the elbow joint angle) and real-time performance with a latency of 0.1097 s. This paper promotes compliant human-robot interaction by dealing with joint-level dynamic transfer challenges, presenting a framework for applications in intelligent manufacturing and rehabilitation robotics.

Keywords: PSO-RF algorithm; bionic robot arm; joint space mapping; motion transfer method.