Tensile Resistance and Fracture Mechanisms of Silica Aerogels Reinforced by Nanotube-Graphene Hybrid Networks

Gels. 2025 Jun 19;11(6):471. doi: 10.3390/gels11060471.

Abstract

Despite their outstanding thermal insulation and ultralight structure, silica aerogels suffer from inherent mechanical fragility, making the investigation of their mechanical behavior crucial for expanding their practical utility in advanced applications. To enhance their mechanical performance, this study introduces a dual-phase reinforcement strategy by anisotropically incorporating carbon nanotubes (CNTs) and graphene oxide (GO) sheets into the aerogel matrix. Using molecular dynamic simulations, we systematically investigate the tensile behavior and pore structure evolution of these hetero-structured composites. The results reveal a non-monotonic dependence of tensile strength on loading ratio, distinguishing three strain-dependent reinforcement regimes. High loading content (11.1%) significantly improves strength under low strain (0-26%), whereas low loading levels (1.8%) are more effective at preserving structural integrity under large strain (44-50%). Moderate loading (5.1%) yields balanced performance in intermediate regimes. While increasing carbon content reduces initial pore size by partially filling the framework, tensile deformation leads to interfacial debonding and the formation of larger pores due to CNT-GO hybrid structure interactions. This work elucidates a dual reinforcement mechanism-physical pore confinement and interfacial coupling-highlighting the critical role of nanostructure geometry in tuning strain-specific mechanical responses. The findings provide mechanistic insights into anisotropic nanocomposite behavior and offer guidance for designing robust porous materials for structural and functional applications.

Keywords: carbon-reinforced silica aerogel; fracture mechanism; tensile behavior.