The present investigation systematically elucidates the distinct functional specialization within the M1-M3 midgut sections of the significant agricultural pest, Nezara viridula. Employing an integrated transcriptomic analysis, three pivotal discoveries were achieved: (1) each midgut segment possesses unique gene expression signatures; (2) metabolic and signal transduction pathways exhibit coordinated regulatory patterns; and (3) parallel expression changes occur between neuroreceptor (e.g., TACR/HTR) and metabolic enzyme (e.g., GLA/NAGA) genes within identical midgut segments. These data reveal that the M1 region is primarily enriched in metabolic processes and neural signaling; the M2 region emphasizes cellular junctions and immune responses, while the M3 region is mainly responsible for cellular senescence and renewal. These discoveries advance the understanding of feeding adaptation mechanisms in Hemipteran insects and propose a "metabolism-defense-regeneration" functional model for the midgut. The established multi-level analytical framework provides a robust methodology for subsequent dissection of complex biological systems, identification of key molecular targets for functional validation, and for the development of novel pest control strategies.
Keywords: KEGG pathway enrichment; Nezara viridula; functional specialization; gene regulatory networks; midgut regions; pest control targets.