Sulfamethoxazole (SMZ), a widely used broad-spectrum antibiotic in aquaculture, lacks comprehensive research on its residual elimination kinetics in tilapia. This study investigated SMZ residue depletion, withdrawal periods, and dietary risks in 1-year-old GIFT tilapia (Genetically Improved Farmed Tilapia Oreochromis niloticus) weighing 500 ± 50 g, following oral gavage administration of a loading dose (200 mg/kg BW on day 1) and then 100 mg/kg BW daily for 6 more days, at 22 ± 2 °C. Tissue samples (plasma, muscle, skin, liver, kidney, gill, and remaining tissues) were collected from five fish per time point at intervals from 0.33 to 30 days post-administration, with SMZ residues quantified via HPLC-MS/MS. Results revealed peak SMZ concentrations at 0.33 days (8 h), ordered as liver > skin > plasma > kidney > remaining tissues > gill > muscle. Muscle residues fell below the maximum residue limit (MRL, 100 μg/kg) by day 3, while skin required 10 days. Kidney residues dropped below the limit of detection (LOD) earliest (16 days), followed by muscle, gill, and remaining tissues (25 days), whereas plasma, liver, and skin retained detectable levels until day 30. Elimination equations for SMZ across tissues exhibited first-order kinetics. Based on the specific conditions of this study, a minimum 11-day withdrawal period is recommended for edible tissues (muscle + skin) after SMZ administration. Hazard quotient (HQ) values for all tissues remained below the safety threshold (HQ = 1), indicating low dietary risk. These findings support SMZ use standardization in tilapia aquaculture to ensure food safety compliance.
Keywords: antibiotics; elimination; health risk; residue; sulfamethoxazole; withdrawal period.