The Impact of Seasonally Varying Dissolved Organic Matter in Natural Aquatic Environments on the Photodegradation of Pharmaceutical Pollutants

Toxics. 2025 May 29;13(6):450. doi: 10.3390/toxics13060450.

Abstract

Photochemical degradation is a major removal pathway for pharmaceutical pollutants in water, and dissolved organic matter (DOM) in water is an important factor affecting this process. This study investigates the differential effects of seasonally-varied dissolved organic matter (DOM) from Songhua River and Liao River on the photodegradation of pharmaceutical pollutants, using levofloxacin (LFX), sulfamethoxazole (SMZ), and ibuprofen (IBP) as target compounds. The results demonstrated that summer and autumn DOM inhibited the photodegradation of LFX and SMZ through light screening and dynamic quenching effects, with inhibition rates of 35.1% and 55.5%, respectively, whereas winter DOM enhanced degradation through photo-oxidation mechanisms. DOM from Songhua River and Liao River significantly promoted the photodegradation of IBP. Quenching experiments showed differences in the contributions of photochemically reactive intermediates (PPRIs) to the photodegradation of different target pollutants, with hydroxyl radicals (•OH) dominating LFX photodegradation (48.79% contribution), excited triplet states of DOM (3DOM*) dominating SMZ photodegradation (85.20% contribution), and singlet oxygen (1O2) dominating IBP photodegradation (79.89% contribution). The photodegradation pathways were elucidated by measuring the photodegradation by-products of the target pollutants: LFX mainly underwent piperazine ring cleavage and oxidative decarboxylation, SMZ underwent isoxazole ring opening and deamination during photodegradation, and IBP underwent photodecarboxylation and oxidation reactions. Under the influence of the DOM from the Songhua River and Liao River, the generation of multiple photodegradation by-products led to an increasing trend in the acute toxicity of target pollutants to luminescent bacteria. This investigation elucidates the dual regulatory mechanisms of natural aquatic DOM on both photo-induced degradation pathways and toxicity evolution dynamics of pharmaceutical contaminants, which is of great significance for understanding the photochemical transformation behavior and risk assessment of pharmaceutical pollutants in aquatic environments.

Keywords: dissolved organic matter; ibuprofen; levofloxacin; photodegradation; sulfamethoxazole.