Modification of Biochar Catalyst Using Copper for Enhanced Catalytic Oxidation of VOCs

Toxics. 2025 Jun 14;13(6):503. doi: 10.3390/toxics13060503.

Abstract

Recently, research has increasingly focused on the introduction of non-precious metals and developing highly stable carriers to enhance catalyst performance. In this study, we successfully synthesized copper (Cu)-modified biochar catalysts utilizing a sequential approach involving enzymatic treatment, liquid impregnation, and activation processes, which effectively enhanced the dispersion and introduction efficiency of Cu onto the biochar, thereby reducing the requisite Cu loading while maintaining high catalytic activity. The experimental results showed that the toluene degradation of 10%Cu@BCL was three times higher than that of unmodified activated carbon (AC) at 290 °C. A more uniform distribution of Cu was obtained by the enzymatic and activation treatments, optimizing the catalyst's structural properties and reducing the amount of Cu on the biochar. Moreover, the transformation between various oxidation states of Cu (from Cu0/Cu(I) to Cu(II)) facilitated the electron transfer during the degradation of toluene. To further understand the catalytic mechanisms, density functional theory (DFT) calculations were employed to elucidate the interactions between toluene molecules and the Cu-modified biochar surface. These findings reveal that the strategic modification of biochar as a carrier not only enhances the dispersion and stability of active metal species but contributes to improved catalytic performance, thereby enhancing its degradation efficiency for VOCs in high-temperature conditions.

Keywords: VOCs; biochar; catalytic oxidation technology; copper.