Spongy moth (Lymantria dispar Linnaeus) is a globally recognized quarantine leaf-eating pest. Spongy moths typically enter diapause after completing embryonic development and overwinter in the egg stage. They spend three-quarters of their life cycle (approximately nine months) in the egg stage, which requires a period of low-temperature stimulation to break diapause and continue growth and development. In this study, we explored the molecular mechanism underlying the diapause process in spongy moth. We performed bioinformatics analysis on four Asian populations of spongy moth and one Asian-European hybrid population through a transcriptome analysis combined with proteomics. The results revealed that 1,842 genes were differentially expressed upon diapause initiation, while 264 genes were identified upon diapause termination. Eight diapause-related genes were screened out from the three-level pathways that were significantly enriched by differentially expressed genes at the time of diapause and diapause termination, and the phylogenetic tree and protein three-dimensional structure model were constructed. This study elucidates the diapause mechanism of spongy moth at the gene and protein levels, providing theoretical insights into the early and precise prevention and control of spongy moth. This study can facilitate the development of an efficient, environmentally friendly control system for managing spongy moth populations in the field.
Copyright: © 2025 Xie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.