An organ-chip model of sporadic ALS using iPSC-derived spinal cord motor neurons and an integrated blood-brain-like barrier

Cell Stem Cell. 2025 Jul 3;32(7):1139-1153.e7. doi: 10.1016/j.stem.2025.05.015. Epub 2025 Jun 24.

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder in which motor neurons (MNs) of the brain and spinal cord degenerate, leading to paralysis. Generating MNs from patient-specific induced pluripotent stem cells (iPSCs) may help elucidate early stages of disease. Here, we combined MNs from patients with early-onset disease with brain microvascular endothelial-like cells in a microfluidic device we termed spinal cord chips (SC-chips) and added media flow, which enhanced neuronal maturation and improved cellular health. Bulk transcriptomic and proteomic analyses of SC-chips revealed differences between control and ALS samples, including increased levels of neurofilaments. Single-nuclei RNA sequencing revealed the presence of two MN subpopulations and an ALS-specific dysregulation of glutamatergic and synaptic signaling. This ALS SC-chip model generates a diversity of mature MNs to better understand ALS pathology in a model that has an active blood-brain barrier-like system for future drug screening.

Keywords: amyotrophic lateral sclerosis; glutamatergic synapse; microfluidic organ-chips; motor neuron identity; neuronal maturation; synaptic signaling.

MeSH terms

  • Amyotrophic Lateral Sclerosis* / genetics
  • Amyotrophic Lateral Sclerosis* / metabolism
  • Amyotrophic Lateral Sclerosis* / pathology
  • Blood-Brain Barrier* / metabolism
  • Blood-Brain Barrier* / pathology
  • Cell Differentiation
  • Humans
  • Induced Pluripotent Stem Cells* / cytology
  • Induced Pluripotent Stem Cells* / metabolism
  • Induced Pluripotent Stem Cells* / pathology
  • Lab-On-A-Chip Devices*
  • Models, Biological*
  • Motor Neurons* / metabolism
  • Motor Neurons* / pathology
  • Spinal Cord* / pathology