Exercise has been shown to have a positive impact on brain health including neuroprotective function. It has been demonstrated to increase the synthesis of neurotrophic factors, support neuronal survival, and improve neuroplasticity. Concurrently, neuregulin plays a vital role in the development, maintenance, and repair of both the central and peripheral nervous system. The link between exercise and neuregulin in mediating neuroprotection has been the subject of increased research to better understand the possible applications for the deterrence of neurodegenerative disorders. Understanding this link is of great interest because it has the potential to lead to new strategies for preventing or slowing the progression of neurodegenerative diseases. With an emphasis on exercise-induced neuregulin-mediated neuroprotection, this article reviews the literature on the neuroprotective effects of exercise and neuregulin. The synergistic effects of exercise and neuregulin on neuroprotection will be clarified and valuable insights will be gained from this review, with potential implications for the development of novel therapeutic strategies for neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD) and Huntington's disease (HD).
Keywords: Exercise; Neuregulin; Neurodegenerative disease; Neuroprotein.
Copyright © 2025 Elsevier B.V. All rights reserved.