Objectives: Hyperuricaemia has been linked to cognitive decline, yet cerebral structural and haemodynamic changes in this population remain poorly defined. We evaluated transcranial colour-coded duplex (TCCD) sonography as a non-invasive screening tool for early mild cognitive impairment (MCI) in elderly hyperuricaemic men. Methods: In this cross-sectional study, 195 men aged ≥ 60 years with hyperuricaemia were stratified by the Montreal Cognitive Assessment (MoCA) into HUA + MCI (MoCA < 26, n = 46) and HUA (MoCA ≥ 26, n = 149) groups. TCCD measured third-ventricle width (TVW) and peak systolic/end-diastolic velocities to calculate resistive (RI) and pulsatility (PI) indices in the middle (MCA) and posterior (PCA) cerebral arteries. Serum uric acid was recorded. Kernel density plots and receiver operating characteristic (ROC) curves assessed diagnostic performance. Results: The HUA + MCI group exhibited higher serum uric acid (508.5 ± 36.3 vs. 492.9 ± 44.0 µmol/L; p = 0.031), greater TVW (0.55 ± 0.11 vs. 0.51 ± 0.08 cm; p = 0.037), and elevated left PCA RI (0.69 ± 0.07 vs. 0.64 ± 0.06) and PI (1.05 ± 0.17 vs. 0.95 ± 0.12; both p < 0.001). ROC analysis identified left PCA PI as the most specific marker (AUC = 0.701; specificity 90.6%; sensitivity 45.7%). Kernel density plots confirmed distinct distributions of key parameters. Conclusions: TCCD-detected ventricular enlargement and raised PCA pulsatility accurately distinguish MCI among hyperuricaemic men. As a non-invasive, accessible technique with high specificity, TCCD may complement MRI and cognitive testing in early screening of at-risk populations.
Keywords: cerebral haemodynamics; hyperuricaemia; mild cognitive impairment; third ventricle width; transcranial colour-coded duplex.