Acute Myeloid Leukemia (LAML) is a life-threatening hematological malignancy, and the DEAD-box helicase 3 X-linked (DDX3X) gene is a potential yet underexplored target gene for LAML. Biomolecules derived from medicinal plants like Aerva javanica offer a great source of therapeutic candidates. This study aimed to investigate the role of DDX3X in LAML and identify plant-derived biomolecules that could inhibit DDX3X using computational approaches. Pan-cancer mutational profiling, a transcriptomic analysis, survival, protein-protein interaction networks, and a principal component analysis (PCA) were employed to elucidate functional associations and transcriptomic divergence. Subsequently, biomolecules from A. javanica were subjected to in silico screening using molecular docking and ADMET profiling. The docking protocol was validated using RK-33, a known DDX3X inhibitor. DDX3X was found to be linked to key leukemogenic pathways, including Wnt/β-catenin and MAPK signaling, indicating it to be a potential target. Molecular docking of A. javanica compounds revealed CIDs 15559724, 5490003, and 74819331 as potent DDX3X inhibitors with strong binding affinity and favorable pharmacokinetic and toxicity profiles compared to RK-33. This study highlights the importance of DDX3X in LAML pathogenesis and suggests targeting it using plant-derived inhibitors, which may require further in vitro and in vivo validation.
Keywords: A. javanica; ADMET; DEAD-box helicase 3 X-linked (DDX3X); acute myeloid leukemia (LAML); molecular docking.