Start Time End Time Integration (STETI): Method for Including Recent Data to Analyze Trends in Kidney Cancer Survival

Healthcare (Basel). 2025 Jun 17;13(12):1451. doi: 10.3390/healthcare13121451.

Abstract

Background/Objectives: Accurately estimating survival times is critical for clinical decision-making, treatment evaluation, resource allocation, and other purposes. Yet data from relatively recent diagnosis cohorts is strongly affected by right censoring that biases average survival times downward. For example, 5-, 10-, or 20-year survival time averages are not available until 5, 10, or 20 years later, which may be in the future, thus presenting a challenge to obtain in the present. An approach to addressing this problem is described in this report. Here it is demonstrated for kidney cancer survival but could also be applied to survival questions for other types of cancer, other diseases, stage progression times, and similar problems in medicine and other fields in which there is a need for up-to-date analyses of survival improvement trends. Methods: This study introduces STETI, an approach to survival estimation that integrates information about survival times of diagnosis year cohorts with information about survival times of death year cohorts. By leveraging data from death year cohorts in addition to the more familiar diagnosis year cohorts, STETI incorporates recent survival data often excluded by traditional approaches due to right censoring, caused when the post-diagnosis time period of interest has not yet elapsed. Using data from SEER, we explain how the proposed approach integrates diagnosis year cohorts with the death year cohorts of recent years. We demonstrate that incorporating death year cohorts addresses an important source of right censorship that is inherent in diagnosis year cohorts from relatively recent years. This permits survival time trend analysis that accounts for recent improvements in survival time that would be difficult to account for using diagnosis year cohorts alone. We tested linear and exponential models to demonstrate the method's ability to derive survival time trends using valuable data that would otherwise risk being left unused. Conclusions: Improved survival estimation can better support personalized treatment planning, healthcare benchmarking, and research into cancer subtypes as well as other domains. To this end, we introduce a hybrid analytical approach that addresses an important source of right censorship. Demonstrating it within the domain of kidney cancer is expected to help pave the way to other applications in oncology and beyond, and offers a case study of STETI, an approach to quantifying and projecting trends in survival time associated with therapeutic advancements.

Keywords: STETI; cancer; kidney; survival; treatment; trend.