Food contaminants, including harmful microbes, pesticide residues, heavy metals and illegal additives, pose significant public health risks. While traditional detection methods are effective, they are often slow and require complex equipment, which limits their application in real-time monitoring and rapid response. Surface-enhanced Raman scattering (SERS) technology has gained widespread use in related research due to its hypersensitivity, non-destructibility and molecular fingerprinting capabilities. In recent years, Au-Ag bimetallic nanoparticles (Au-Ag BNPs) have emerged as novel SERS substrates, accelerating advancements in SERS detection technology. Au-Ag BNPs can be classified into Au-Ag alloys, Au-Ag core-shells and Au-Ag aggregates, among which the Au-Ag core-shell structure is more widely applied. This review discusses the types, synthesis methods and practical applications of Au-Ag BNPs in food contaminants. The study aims to provide valuable insights into the development of new Au-Ag BNPs and their effective use in detecting common food contaminants. Additionally, this paper explores the challenges and future prospects of SERS technology based on Au-Ag BNPs for pollutant detection, including the development of functional integrated substrates, advancements in intelligent algorithms and the creation of portable on-site detection platforms. These innovations are designed to streamline the detection process and offer guidance in selecting optimal sensing methods for the on-site detection of specific pollutants.
Keywords: Au-Ag bimetallic nanoparticles; Surface-enhanced Raman scattering; food contaminants; sensor.