Background: Recent studies have revealed associations between gut microbiota and glioma. However, the underlying mechanisms remain poorly understood. This study primarily aims to elucidate the impact of altered gut microbiota on tumor progression in glioma-bearing mice.
Methods: Fecal samples were collected from glioma patients and healthy controls to compare the effects of human-derived gut microbiota on glioma development in mice. We also analyzed the associations between these microbiota profiles and plasma metabolites.
Results: Significant differences were observed in both the composition and diversity of the gut microbiota between glioma patients and healthy controls. Mice transplanted with gut microbiota from high-grade glioma patients (HGG-FMT) exhibited accelerated glioma progression compared to those transplanted with microbiota from healthy individuals (HC-FMT). Specifically, Eisenbergiella, Mailhella, and Merdimonas were significantly enriched in HGG-FMT mice, while Limosilactobacillus and Anaerospora increased in HC-FMT mice. Furthermore, Merdimonas showed a positive correlation with sphingosine, sphingosine 1-phosphate, and D-sphingosine in HGG-FMT mice. Conversely, Limosilactobacillus was positively correlated with stearidonic acid and eicosapentaenoic acid in HC-FMT mice.
Conclusions: Our findings demonstrate that gut microbiota from high-grade glioma patients can promote glioma progression in mice, potentially through mechanisms involving sphingosine 1-phosphate. This metabolite may enter the bloodstream and accelerate glioma growth, offering novel insights into glioma pathogenesis and potential treatment options.
Keywords: Merdimonas; glioma; gut microbiota; metabolite; sphingosine 1-phosphate.
© The Author(s) 2025. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.