Background: Pathogenic mycobacteria, such as Mycobacterium tuberculosis complex (Mtbc), and non-tuberculous mycobacteria (NTMs) can cause severe chronic pulmonary infections. However, not all infected patients develop active disease, and it remains unclear whether key lung microbiome taxa play a role in the pathogenesis of tuberculosis (TB) and NTM lung diseases (LD). Here, we aim to further define the lung microbiome composition in TB, and NTM-LD prior to the initiation of therapy.
Study design: We employed 16S rRNA amplicon sequencing to characterize the baseline microbiome in bronchoalveolar lavage fluid (BALF) from patients diagnosed with TB (n = 23), NTM-LD (n = 19), or non-infectious inflammatory disease (n = 4). We applied depletion of human cells, removal of extracellular DNA, implementation of a decontamination strategy, and exploratory whole-metagenome sequencing (WMS) of selected specimens.
Results: Genera Serratia and unclassified Yersiniaceae dominated the lung microbiome of most patients with a mean relative abundance of >15% and >70%, respectively. However, at the sub-genus level, as determined by amplicon sequence variants (ASVs), TB-patients exhibited increased community diversity, and distinct signatures of ASV_7, ASV_21 abundances which resulted in a significant association with disease state. Exploratory WMS, and ASV similarity analyses suggested the presence of Serratia liquefaciens, Serratia grimesii, Serratia myotis and/or Serratia quinivorans in TB and NTM-LD patients.
Conclusions: The lung microbiome of TB-patients harbored a distinct, and heterogenous structure, with specific occurrences of certain Serratia traits. Some of these traits may play a role in understanding the microbial interactions in the lung microbiome of patients infected with Mtbc.
Copyright: © 2025 Belheouane et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.