Background & aims: Paslahepevirus balayani (bHEV), also known as hepatitis E virus (HEV), encompasses eight genotypes, five of which infect humans. Rats are natural reservoirs of Rocahepevirus ratti genotype 1 (HEV-r-1; rat HEV; rHEV), which has recently been implicated in viral hepatitis. Despite the antigenic divergence between bHEV and rHEV, studies on shared protective antibodies remain rare.
Methods: Polyclonal and monoclonal antibody responses against bHEV and rHEV were analyzed using antibody enzyme-linked immunosorbent assays. The efficacy of six potent bHEV-elicited cross-reactive antibodies in preventing rHEV infection was evaluated via challenge assays in rats. Cryo-EM was performed to assess the structural basis for the differential protective efficacy of the six antibodies. The viral lysis ability of these antibodies was assessed by separately reacting purified HEV-b-1 and HEV-r-1 virions with each antibody.
Results: We determined that antibody responses to bHEV infection and vaccination possess limited cross-reactivity to rHEV and identified two cross-reactive antigenic sites within the E2s domain. Structural analysis and animal challenge studies pinpointed potent cross-reactive antibodies targeting antigenic site 1, indicating its prophylactic efficacy against rHEV. Conversely, antibodies recognizing antigenic site 2 were found to facilitate viral lysis of bHEV but not rHEV.
Conclusions: These findings underscore the importance of antigenic site 1 in the design of broad-spectrum vaccines and therapeutics to mitigate the impact of diverse HEV genotypes on human health. IMPACT AND IMPLICATIONS: rHEV spillover to humans represents an unprecedented threat. Significant antigenic differences between rHEV and bHEV may exacerbate the impact of viral hepatitis. Our study reveals that cross-reactive human antibodies can offer protection against rHEV infection. Cross-protective antibodies targeting antigenic site 1 can be used to inform the development of practical strategies for preventing rHEV infection.
Keywords: broad-spectrum vaccines; cross-protection; rat hepatitis E virus; therapeutics; viral hepatitis.
Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.