Genome Sequences of the First Phages Infecting Limnohabitans Reveal Their Global Distribution and Metabolic Potential

Microorganisms. 2025 Jun 6;13(6):1324. doi: 10.3390/microorganisms13061324.

Abstract

Bacteriophages (phages) are one of the critical biotic drivers of prokaryotic community dynamics, functions, and evolution. Despite their importance in aquatic ecosystems, very few phages have been isolated from freshwater lakes, hampering our understanding of their ecological importance and usage in a variety of biotechnological applications. Limnohabitans, with a ubiquitous distribution, is a metabolically versatile, fast-growing, morphologically diverse freshwater lake bacterial genera. It is especially abundant in pH-neutral and alkaline aquatic habitats, where it represents an average of 12% of freshwater bacterioplankton and plays an important role in funneling carbon from primary producers to higher trophic levels. However, no phages infecting Limnohabitans have been reported to date. Here, we describe, for the first time, three phages infecting Limnohabitans, DC31, DC33, and YIMV22061, isolated from two freshwater lakes in China and characterized using genome content analysis and comparative genomics. DC31 and DC33, recovered from the eutrophic Dianchi Lake, with auxiliary metabolic genes (AMGs), associated with nucleotide metabolism, whereas YIMV22061, isolated from the oligotrophic Fuxian Lake, carried AMGs involved in antibiotic resistance. The AMGs they carried highlight their impacts on Limnohabitans in different environments. Comparative genomic analyses indicate that DC31, DC33, and YIMV22061 represent three novel species in the Caudoviricetes class. IMG/VR database alignment further reveal that these phages are widely distributed across diverse aquatic and terrestrial ecosystems globally, suggesting their ecological significance. This study provides a basis for better understanding Limnohabitans-phage interactions.

Keywords: Limnohabitans; auxiliary metabolic genes; bacteriophage; distribution; genome.