New Tools in Heavy Metal Detection: Synthesis, Spectroscopic, and Quantum Chemical Characterization of Selected Water-Soluble Styryl Derivatives of Quinoline and 1,10-Phenanthroline

Molecules. 2025 Jun 19;30(12):2659. doi: 10.3390/molecules30122659.

Abstract

A series of water-soluble molecules based on 8-isopropyl-2-methyl-5-nitroquinoline and 1,10-phenanthroline core were designed by introducing a π-conjugated bridge, vinyl unit -CH=CH-. We present the selective conversion of methyl groups located on the C2 and C9 positions in the constitution of selected quinoline or 1,10-phenanthroline derivatives, respectively, into vinyl (or styryl) products by applying Perkin condensation. The two groups of ligands differ in the presence of one or two arms. The structure of the molecule ((1E,1'E)-(1,10-phenanthroline-2,9-diyl)bis(ethene-2,1-diyl))bis(benzene-4,1,3-triyl) tetraacetate was determined by single-crystal X-ray diffraction measurements. The X-ray, NMR, and DFT computational studies indicate the influence of rotation (rotamers) on the physical properties of studied styryl molecules. The results show that the styryl molecules with the vinyl unit -CH=CH- exhibit significant static and dynamic hyperpolarizabilities. Quantum chemical calculations using density functional theory and B3LYP/6-311++G(d,p) with Grimme's dispersion correction approach predict the existence and relative stability of different spatial cis(Z)- and trans(E)-conformers of styryl derivatives of quinoline and 1,10-phenanthroline, which exhibit different electronic distribution and conjugation within the molecular skeleton, dipole moments, and steric interactions, leading to variations in their photophysical behavior and various applications. Our studies indicate that the rotation and isomerization of aryl groups can significantly influence the electronic and optical properties of π-conjugated systems, such as vinyl units (-CH=CH-). The rotation of aryl groups around the single bond that connects them to the vinyl unit can lead to changes in the effective π-conjugation between the aryl group and the rest of the π-conjugated system. The rotation and isomerization of aryl groups in π-conjugated systems significantly impact their electronic and optical properties. These changes can modify the efficiency of π-conjugation, affecting charge transfer processes, absorption properties, light emission, and electrical conductivity. In designing optoelectronic materials, such as organic dyes, organic semiconductors, or electrochromic materials, controlling the rotation and isomerization of aryl groups can be crucial for optimizing their functionality.

Keywords: DFT studies; phenanthroline; quinoline; styryl; vinyl; water-soluble ligand.