Automated Image-Based Wound Area Assessment in Outpatient Clinics Using Computer-Aided Methods: A Development and Validation Study

Medicina (Kaunas). 2025 Jun 17;61(6):1099. doi: 10.3390/medicina61061099.

Abstract

Background and Objectives: Traditionally, we evaluate the size of a wound by using Opsite Flexigrid transparent film dressing, placing it over the wound, tracing the edges of the wound, and then calculating the area. However, this method is both time-consuming and subjective, often leading to varying results depending on the individual performing the assessment. In this study, our goal is to provide an objective method to calculate the wound size and solve variations in photo-taking distance caused by different medical practitioners or at different times, as these can lead to inaccurate wound size assessments. To evaluate this, we employed K-means clustering and used a QR code as a reference to analyze images of the same wound captured at varying distances, objectively quantifying the areas of 40 wounds. This study aims to develop an objective method for calculating the wound size, addressing variations in photo-taking distance that occur across different medical personnel or time points-factors that can compromise measurement accuracy. By improving consistency and reducing the manual workload, this approach also seeks to enhance the efficiency of healthcare providers. We applied K-means clustering for wound segmentation and used a QR code as a spatial reference. Images of the same wounds taken at varying distances were analyzed, and the wound areas of 40 cases were objectively quantified. Materials and Methods: We employed K-means clustering and used a QR code as a reference to analyze wound photos taken by different medical practitioners in the outpatient consulting room. K-means clustering is a machine learning algorithm that segments the wound region by grouping pixels in an image according to their color similarity. It organizes data points into clusters based on shared features. Based on this algorithm, we can use it to identify the wound region and determine its pixel area. We also used a QR code as a reference because of its unique graphical pattern. We used the printed QR code on the patient's identification sticker as a reference for length. By calculating the ratio of the number of pixels within the square area of the QR code to its actual area, we applied this ratio to the detected wound pixel area, enabling us to calculate the wound's actual size. The printed patient identification stickers were all uniform in size and format, allowing us to apply this method consistently to every patient. Results: The results support the accuracy of our algorithm when tested on a standard one-cent coin. The paired t-test comparing the first and second photos shot yielded a p-value of 0.370, indicating no significant difference between the two. Similarly, the t-test comparing the first and third photos shot produced a p-value of 0.179, also showing no significant difference. The comparison between the second and third photos shot resulted in a p-value of 0.547, again indicating no significant difference. Since all p-values are greater than 0.05, none of the test pairs show statistically significant differences. These findings suggest that the three randomly taken photo shots produce consistent results and can be considered equivalent. Conclusions: Our algorithm for wound area assessment is highly reliable, interchangeable, and consistently produces accurate results. This objective and practical method can aid clinical decision-making by tracking wound progression over time.

Keywords: K-means clustering; computer aided; wound area.

MeSH terms

  • Ambulatory Care Facilities / organization & administration
  • Female
  • Humans
  • Image Processing, Computer-Assisted* / methods
  • Male
  • Wounds and Injuries*