The transition to renewable energy makes energy storage crucial. Aqueous organic redox flow batteries (AORFBs) show great potential in large-scale energy storage due to their outstanding safety compared to conventional systems. Derivatives of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) show significant promise as catholyte materials in AORFBs. In this work, a bipyridine-ester dual-modified TEMPO derivative, (2,2,6,6-tetramethyl-1-piperidinyloxy)carbonyl-ethyl-(4-(pyridin-4-yl)benzyl) ammonium bromide (TEMP-BPy) was successfully synthesized via a two-step functionalization. The synthesized compound was experimentally confirmed to possess excellent electrochemical stability. The electron-withdrawing effect of the 4,4'-bipyridine moiety elevates the redox potential by 60 mV. When implemented as a catholyte paired with methyl viologen (MV) as the anolyte in AORFB, the TEMP-BPy/MV system demonstrates excellent performance: achieving a cell voltage of 1.28 V and an energy density of 14.5 Wh L-1 at a 0.6 M (16.08 Ah L-1) concentration with 71.3% material utilization. Notably, it demonstrates exceptional cycling stability with an average capacity retention of 99.86% per cycle over 200 cycles, and it exhibits particularly impressive initial stability, with an average capacity retention of 99.997% per cycle during the first 100 cycles.
Keywords: TEMPO derivatives; aqueous organic redox flow battery; energy storage.