Predicting Rheological Properties of Asphalt Modified with Mineral Powder: Bagging, Boosting, and Stacking vs. Single Machine Learning Models

Materials (Basel). 2025 Jun 19;18(12):2913. doi: 10.3390/ma18122913.

Abstract

This study systematically compares the predictive performance of single machine learning (ML) models (KNN, Bayesian ridge regression, decision tree) and ensemble learning methods (bagging, boosting, stacking) for quantifying the rheological properties of mineral powder-modified asphalt, specifically the complex shear modulus (G*) and the phase angle (δ). We used two emulsifiers and three mineral powders for fabricating modified emulsified asphalt and conducting rheological property tests, respectively. Dynamic shear rheometer (DSR) test data were preprocessed using the local outlier factor (LOF) algorithm, followed by K-fold cross-validation (K = 5) and Bayesian optimization to tune model hyperparameters. This framework uniquely employs cross-validated predictions from base models as input features for the meta-learner, reducing information leakage and enhancing generalization. Traditional single ML models struggle to characterize accurately as a result, and an innovative stacking model was developed, integrating predictions from four heterogeneous base learners-KNN, decision tree (DT), random forest (RF), and XGBoost-with a Bayesian ridge regression meta-learner. Results demonstrate that ensemble models outperform single models significantly, with the stacking model achieving the highest accuracy (R2 = 0.9727 for G* and R2 = 0.9990 for δ). Shapley additive explanations (SHAP) analysis reveals temperature and mineral powder type as key factors, addressing the "black box" limitation of ML in materials science. This study validates the stacking model as a robust framework for optimizing asphalt mixture design, offering insights into material selection and pavement performance improvement.

Keywords: SHAP; ensemble machine learning; mineral powder; modified asphalt; rheological properties.