Ground texture-based localization leverages environment-invariant, planar-constrained features to enhance pose estimation robustness, thus offering inherent advantages for seamless localization. However, traditional feature extraction methods struggle with reliable performance under large-scale rotations and texture sparsity in the case of ground texture-based localization. This study addresses these challenges through a learning-based feature extraction framework-Ground Texture Rotation-Equivariant Keypoints and Descriptors (GT-REKD). The GT-REKD framework employs group-equivariant convolutions over the cyclic rotation group, augmented with directional attention and orientation-encoding heads, to produce dense keypoints and descriptors that are exactly invariant to 0-360° in-plane rotations. The experimental results for ground texture localization show that GT-REKD achieves 96.14% matching in pure rotation tests, 94.08% in incremental localization, and relocalization errors of 5.55° and 4.41 px (≈0.1 cm), consistently outperforming baseline methods under extreme rotations and sparse textures, highlighting its applicability to visual localization and simultaneous localization and mapping (SLAM) tasks.
Keywords: deep learning; feature extraction; ground texture; keypoint detection; visual localization.