A Data-Driven Loose Contact Diagnosis Method for Smart Meters

Sensors (Basel). 2025 Jun 12;25(12):3682. doi: 10.3390/s25123682.

Abstract

In smart meters, loose contact at screw terminals can lead to prolonged overheating and arcing, posing significant fire hazards. To mitigate these risks through early fault detection, this study proposes a data-driven framework integrating the Local Outlier Factor (LOF) and Multiple Linear Regression (MLR) algorithms. Voltage differentials, extracted from operational data collected via a simulated multi-meter metering enclosure, are leveraged to diagnose terminal contact degradation. Specifically, LOF identifies arc faults, characterized by abrupt and transient voltage deviations, by detecting outliers in voltage differentials, while MLR quantifies contact resistance through regression analysis, enabling precise loose contact detection, a condition associated with gradual and persistent voltage changes due to increased resistance. Extensive validation demonstrates the framework's robustness, outperforming conventional centralized methods in diagnostic accuracy and adaptability to diverse load conditions.

Keywords: LOF method; MLR method; arc fault; loose contact; screw terminal; smart meters; voltage differentials.