Accurate, real-time estimation of rainfall from Doppler radars remains a challenging problem, particularly over complex terrain where vertical beam sampling, atmospheric effects, and radar quality limitations introduce significant biases. In this work, we leverage citizen science rain gauge observations to develop a deep learning framework that corrects biases in radar-derived surface precipitation rates at high temporal resolution. A key step in our approach is the construction of piecewise-linear rainfall accumulation functions, which align gauge measurements with radar estimates and allow for the generation of high-quality instantaneous rain rate labels from rain gauge observations. After validating gauges through a two-stage temporal and spatial consistency filter, we train an adapted ResNet-101 model to classify rainfall intensity from sequences of surface precipitation rate estimates. Our model substantially improves precipitation classification accuracy relative to NOAA's operational radar products within observed spatial regions, achieving large gains in precision, recall, and F1 score. While generalization to completely unseen regions remains more challenging, particularly for higher-intensity rainfall, modest improvements over baseline radar estimates are still observed in low-intensity rainfall. These results highlight how combining citizen science data with physically informed accumulation fitting and deep learning can meaningfully improve real-time radar-based rainfall estimation and support operational forecasting in complex environments.
Keywords: citizen science; deep learning; radar calibration; radar precipitation estimation; radar-rain gauge rainfall accumulation; rainfall accumulation; real-time weather prediction.