Dynamic Monitoring of a Bridge from GNSS-RTK Sensor Using an Improved Hybrid Denoising Method

Sensors (Basel). 2025 Jun 13;25(12):3723. doi: 10.3390/s25123723.

Abstract

This study focused on the monitoring of a bridge using the global navigation satellite system real-time kinematic (GNSS-RTK) sensor. An improved hybrid denoising method was developed to enhance the GNSS-RTK's accuracy. The improved hybrid denoising method consists of the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), the detrended fluctuation analysis (DFA), and an improved wavelet threshold denoising method. The stability experiment demonstrated the superiority of the improved wavelet threshold denoising method in reducing the noise of the GNSS-RTK. A noisy simulation signal was created to assess the performance of the proposed method. Compared to the ICEEMDAN method and the CEEMDAN-WT method, the proposed method achieves lower RMSE and higher SNR. The signal obtained by the proposed method is similar to the original signal. Then, GNSS-RTK was used to monitor a bridge in maintenance and rehabilitation construction. The bridge monitoring experiment lasted for four hours. (Considering the space limitation of the article, only representative 600 s data is displayed in the paper.) The bridge is located in Tianjin, China. The original displacement ranges are -14.9~19.3 in the north-south direction; -26.9~24.7 in the east-west direction; and -46.7~52.3 in the vertical direction. The displacement ranges processed by the proposed method are -12.3~17.2 in the north-south direction; -24.6~24.1 in the east-west direction; and -46.7~51.1 in the vertical direction. The proposed method processed fewer displacements than the initial monitoring displacements. It indicates the proposed method reduces noise significantly when monitoring the bridge based on the GNSS-RTK sensor. The average sixth-order frequency from PSD is 1.0043 Hz. The difference between the PSD and FEA is only 0.99%. The sixth-order frequency from the PSD is similar to that from the FEA. The lower modes' natural frequencies from the PSD are smaller than those from the FEA. It illustrates the fact that, during the repair process, the missing load-bearing rods made the bridge less stiff and strong. The smaller natural frequencies of the bridge, the complex construction environment, the diversity of workers' operations, and some unforeseen circumstances occurring in the construction all bring risks to the safety of the bridge. We should pay more attention to the dynamic monitoring of the bridge during construction in order to understand the structural status in time to prevent accidents.

Keywords: GNSS-RTK; bridge; dynamic monitoring; improved denoising method.