Thrips can be attracted or repelled by volatiles from different host plant species. Houttuynia cordata is a common plant species with a strong, offensive smell, and few pests have been detected on this plant. Here, the olfactory responses of Frankliniella occidentalis to H. cordata volatiles were tested using electroantennography (EAG) and behavioral bioassays in different types of olfactometers, and the behavioral responses of Orius similis, a natural enemy of F. occidentalis, to the related main volatile compounds were also evaluated. Y-tube olfactometer bioassays showed that F. occidentalis performed negative responses to H. cordata volatiles. Decanal (47.21%), 1-decanol (11.02%), dodecanal (7.13%), β-myrcene (5.12%), and decanoyl acetaldehyde (3.76%) were the more abundant components in the H. cordata volatile profile in gas chromatography-mass spectrometry analysis. EAG recordings showed that the antennae of female thrips could perceive these five compounds at a wide range of concentrations. In six-arm olfactometer bioassays, F. occidentalis exhibited negative responses to decanal, dodecanal, and decanoyl acetaldehyde at various doses but performed positive responses to 1-decanol and β-myrcene at certain doses. Furthermore, decanal, dodecanal, and decanoyl acetaldehyde at all concentrations showed no significant influences on the behavioral responses of O. similis. According to the results above, H. cordata can be a repellent plant species to F. occidentalis, and decanal, dodecanal, and decanoyl acetaldehyde show great potential for development as repellents for the control of F. occidentalis. In short, our results suggest that an integrated pest management system combining H. cordata-derived biopesticides with releases of the predator O. similis could effectively control F. occidentalis.
Keywords: EAG response; Frankliniella occidentalis; Houttuynia cordata; integrated pest management; olfactory response; volatiles.