The treatment of burn injuries remains a significant global challenge. Although conventional cellulose-based dressings are still the dominant clinical choice, chitosan-based burn wound dressing materials have emerged as a promising alternative due to their unique physicochemical properties and biocompatibility. In this mini-review, we aim to provide a summary of recent advances in chitosan-based dressing materials and highlight their advantages in the treatment of burn wounds. Specifically, we first outline the chemical structure and synthesis methods of chitosan and its derivatives. Subsequently, various forms of chitosan-based dressings are introduced, with a particular focus on hydrogels and micro/nanofibers dressings, along with an overview of their preparation methods. Considering the microenvironment of the burn wound site, we then summarize the design principles and clinical efficacy of chitosan-based dressings with antimicrobial and/or antioxidative activity. Additionally, the applications of chitosan dressings in tissue engineering for burn treatment are also discussed, including growth factor delivery, gene therapy, and stem cell-based treatments. Finally, we examine the main challenges of chitosan-based dressing materials and the potential future directions. Through this mini-review, we expect to provide new perspectives for the development of wound dressings for burn care.
Keywords: antimicrobial activity; antioxidative activity; burn wound; chitosan; dressing forms; tissue engineering.