Automatic Multiclass Tissue Segmentation Using Deep Learning in Brain MR Images of Tumor Patients

J Comput Assist Tomogr. 2025 Jun 30. doi: 10.1097/RCT.0000000000001750. Online ahead of print.

Abstract

Objective: Precise delineation of brain tissues, including lesions, in MR images is crucial for data analysis and objectively assessing conditions like neurological disorders and brain tumors. Existing methods for tissue segmentation often fall short in addressing patients with lesions, particularly those with brain tumors. This study aimed to develop and evaluate a robust pipeline utilizing convolutional neural networks for rapid and automatic segmentation of whole brain tissues, including tumor lesions.

Materials and methods: The proposed pipeline was developed using BraTS'21 data (1251 patients) and tested on local hospital data (100 patients). Ground truth masks for lesions as well as brain tissues were generated. Two convolutional neural networks based on deep residual U-Net framework were trained for segmenting brain tissues and tumor lesions. The performance of the pipeline was evaluated on independent test data using dice similarity coefficient (DSC) and volume similarity (VS).

Results: The proposed pipeline achieved a mean DSC of 0.84 and a mean VS of 0.93 on the BraTS'21 test data set. On the local hospital test data set, it attained a mean DSC of 0.78 and a mean VS of 0.91. The proposed pipeline also generated satisfactory masks in cases where the SPM12 software performed inadequately.

Conclusions: The proposed pipeline offers a reliable and automatic solution for segmenting brain tissues and tumor lesions in MR images. Its adaptability makes it a valuable tool for both research and clinical applications, potentially streamlining workflows and enhancing the precision of analyses in neurological and oncological studies.

Keywords: brain tumor segmentation; convolutional neural networks; deep learning; glioma; magnetic resonance imaging.