Multiple sclerosis (MS) is an immune-mediated disease with no current cure. Drug discovery and repurposing are essential to enhance treatment efficacy and safety. We utilized summary statistics for protein quantitative trait loci (pQTL) of 2,004 plasma and 1,443 brain proteins, a genome-wide association study of MS susceptibility with 14,802 cases and 26,703 controls, both bulk and cell-type specific transcriptome data, and external pQTL data in blood and brain. Our integrative analysis included a proteome-wide association study to identify MS-associated proteins, followed by summary-data-based Mendelian randomization to determine potential causal associations. We used the HEIDI test and Bayesian colocalization analysis to distinguish pleiotropy from linkage. Proteins passing all analyses were prioritized as potential drug targets. We further conducted pathway annotations and protein-protein interaction network analysis (PPI) and verified our findings at mRNA and protein levels. We tested hundreds of MS-associated proteins and confirmed 18 potential causal proteins (nine in plasma and nine in brain). Among these, we found 78 annotated pathways and 16 existing non-MS drugs targeting six proteins. We also identified intricateAQ PPIs among seven potential drug targets and 19 existing MS drug targets, as well as PPIs of four targets across plasma and brain. We identified two targets using bulk mRNA expression data and four targets expressed in MS-related cell types. We finally verified 10 targets using external pQTL data. We prioritized 18 potential drug targets in plasma and brain, elucidating the underlying pathology and providing evidence for potential drug discovery and repurposing in MS.
Keywords: causal; genomics; multiple sclerosis; proteomics; transcriptomics.