Accurate prediction of Hand, Foot, and Mouth Disease (HFMD) is crucial for effective epidemic prevention and control. Existing prediction models often overlook the cross-regional transmission dynamics of HFMD, limiting their applicability to single regions. Furthermore, their ability to perceive spatio-temporal features holistically remains limited, hindering the precise modeling of epidemic trends. To address these limitations, a novel HFMD prediction model named Seq2Seq-HMF is proposed, which is based on the Sequence-to-Sequence(Seq2Seq) framework. This model leverages hybrid perception of multi-scale features. First, the model utilizes graph structure modeling for multi-regional epidemic-related features. Secondly, a novel Spatio-Temporal Parallel Encoding(STPE) Cell is designed; multiple STPE Cells constitute an encoder capable of hybrid perception across multi-scale spatio-temporal features. Within this encoder, graph-based feature representation and iterative convolution operations enable the capture of cumulative influence of neighboring regions across temporal and spatial dimensions, facilitating efficient extraction of spatio-temporal dependencies between multiple regions. Finally, the decoder incorporates a frequency-enhanced channel attention mechanism(FECAM) to improve the model's comprehension of temporal correlations and periodic features, further refining prediction accuracy and multi-step forecasting capabilities. Experimental results, utilizing multi-regional data from Japan to predict HFMD cases one to four weeks ahead, demonstrate that our proposed Seq2Seq-HMF model outperforms baseline models. Additionally, the model performs well on single-region data from a city in southern China, confirming its strong generalization ability.
Copyright: © 2025 Lei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.