Heart failure (HF) is a progressive disease characterized by persistent or episodic worsening of symptoms, leading to functional deterioration. Clinically, guidelines recommend the use of SGLT2 inhibitors for the treatment of heart failure. However, the SGLT2 inhibitors exist potential risks including weight loss and euglycemic diabetic ketoacidosis. We designed and synthesized a series of O-glucoside derivatives by introducing nitrogen-containing heterocyclic fragments. Among them, compound E9 showed the most protective effect on the glucose-free DMEM-induced injured cardiomyocytes, and the structure-activity relationships (SAR) of these compounds were preliminarily evaluated in cardiomyocyte injury model. Furthermore, compound E9 significantly enhanced the inhibition of SGLT2, NHE1, and SOD enzyme activity, increased ATP levels in damaged cardiomyocytes, and suppressed Ang II-induced myocardial fibrosis, the autophagy receptor protein P62 and the expression of cell injury markers. Additionally, compound E9 significantly improved cardiac function in TAC-induced HF mice, inhibited cardiomyocyte hypertrophy and collagen deposition, ameliorated myocardial tissue damage, enhanced mitochondrial autophagy in injured cardiomyocytes, and ultimately increased survival rates in HF mice. In conclusion, this study reveals that the novel O-glucoside derivative E9 was a promising compound for the treatment of heart failure.
Copyright © 2025 Elsevier Masson SAS. All rights reserved.