Phage arabinosyl-hydroxy-cytosine DNA modifications result in distinct evasion and sensitivity responses to phage defense systems

Cell Host Microbe. 2025 Jun 24:S1931-3128(25)00234-3. doi: 10.1016/j.chom.2025.06.005. Online ahead of print.

Abstract

Bacteria encode diverse anti-phage systems, such as CRISPR-Cas and restriction modification (RM), which limit infection by targeting phage DNA. We identified a DNA modification in phages, i.e., 5-arabinosyl-hydroxy-cytosine (5ara-hC), which adds arabinose to cytosines via a hydroxy linkage and protects phage from DNA targeting. The hydroxy linkage was common among arabinoslyated phages, with some arabinosylated phages encoding arabinose-5ara-hC transferases (Aat) that add a second or third arabinose to DNA. DNA arabinosylation enables evasion from DNA-targeting type I CRISPR-Cas and type II RM systems. However, arabinosylated phages remain sensitive to RNA-targeting CRISPR-Cas (type III and VI) and promiscuous type IV restriction endonucleases. 5ara-hC enables evasion of glycosylase defenses that target phages with glucosylated hydroxymethyl cytosines, and 5ara-ara-hC protects against some defenses capable of targeting 5ara-hC-modified phages. Collectively, this work identifies DNA modifications that enable phages to evade multiple defenses yet remain vulnerable to some systems that target RNA or modified nucleobases.

Keywords: CRISPR-Cas; DNA modification; anti-phage systems; phage defenses; phages; restriction-modification.